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A stabilized mixed finite element method for Darcy–Stokes flow
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SUMMARY

This paper presents a new stabilized finite element method for the Darcy–Stokes equations also known as
the Brinkman model of lubrication theory. These equations also govern the flow of incompressible viscous
fluids through permeable media. The proposed method arises from a decomposition of the velocity field
into coarse/resolved scales and fine/unresolved scales. Modelling of the unresolved scales corrects the
lack of stability of the standard Galerkin formulation for the Darcy–Stokes equations. A significant feature
of the present method is that the structure of the stabilization tensor s appears naturally via the solution
of the fine-scale problem. The issue of arbitrary combinations of pressure–velocity interpolation functions
is addressed, and equal-order combinations of C◦ interpolations are shown to be stable and convergent.
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1. INTRODUCTION

This paper presents a new stabilized mixed finite element method for the Darcy–Stokes equations.
It is an extension of the stabilized mixed finite element formulation for the Darcy flow presented
in Masud and Hughes [1]. A stabilized mixed discontinuous Galerkin (DG) formulation for the
Darcy–Stokes equations where the pressure and velocity fields are assumed discontinuous is being
developed in Masud and Hughes [2].

The stabilized method presented in Masud and Hughes [1] accommodated continuous as well
as discontinuous pressure interpolations, but required the velocity interpolation to satisfy the
normal continuity condition. The formulation was then extended to the DG method for the Darcy
flow in Hughes et al. [3] where both velocity and pressure fields were considered discontinuous.
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666 A. MASUD

A mathematical analysis presented in Brezzi et al. [4] revealed that these methods may be viewed
as a stable, linear combination of two unstable methods, namely, Bassi and Rebay [5] and Baumann
and Oden [6]. Some recent works on stabilized methods are [1, 2, 4, 7–24].

The present method for Darcy–Stokes equations employs Hughes variational multiscale (HVM)
framework wherein the velocity field is decomposed into coarse/resolved scales and fine/unresolved
scales. Modelling of the unresolved scales leads to a multiscale/stabilized form of the Darcy–Stokes
equations. A significant feature of the present method is that the structure of the stabilization tensor s
appears naturally via the solution of the fine-scale problem. In our earlier works, we have employed
similar ideas to develop multiscale/stabilized formulations for the incompressible Navier–Stokes
equations [20], advection–diffusion equation [19], convective–diffusive heat transfer [7], the Darcy
flow equations [1], and the Fokker–Planck equation [18].

An outline of the remainder of the paper is as follows: Section 2 presents the standard Galerkin
finite element formulation. Section 3 presents the derivation of the new multiscale/stabilized for-
mulation. Numerical simulations with one-dimensional elements employing various combinations
of Lagrange polynomial interpolations, and two-dimensional linear triangles and quadrilaterals em-
ploying standard polynomial interpolations in parametric coordinates are presented in Section 4.
In Section 5, we draw conclusions.

2. MIXED VELOCITY–PRESSURE FORMULATION

Let � ⊂ Rnsd be an open-bounded region with piecewise smooth boundary �. The number of space
dimensions, nsd, is equal to 2 or 3. Darcy–Stokes equations and conservation of mass equations
are written as follows:

�

�
v + ∇p − � �v= f on � (1)

div v= � on � (2)

v · n= � on � (3)

where v is the velocity vector, p is the pressure, f is the body force vector, � is the volumetric
flow rate at source or sink, �>0 is the viscosity, �>0 is the permeability, and n is the unit outward
normal vector to �. From Equations (2) and (3), the prescribed data � and � are required to satisfy
the constraint

∫
� � d�= ∫

� � d�.

2.1. The classical weak formulation

Let

V= H1
0 (div;�)

def={v|v∈ (L2(�))nsd, div v∈ L2(�), trace(v · n) = � in H1/2(�)} (4)

P= L2(�) \ R
def=

{
p|p ∈ L2(�),∇p ∈ L2(�)nsd,

∫
�
p d�= 0

}
(5)

For further elaboration on these spaces, see Brezzi and Fortin [25].
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We assume �, � and � are given. The classical weak formulation of (1)–(3) is: find v∈V, p ∈P,
such that, for all w∈V, q ∈P,(

w,
�

�
v
)

− (divw, p) + (q, div v) + (∇w, �∇v) = (w, f) + (q,�) + (w, �∇v)� (6)

where (·, ·) is the L2(�) inner product. For sufficiently regular data, the weak formulation is known
to possess a unique solution.

For future reference, it is convenient to rewrite (6) as follows: let Y=V×P,V= {v, p} and
W={w, q}. Find V∈Y, such that, for all W∈Y,

B(W,V) = L(W) (7)

where

B(W,V) =
(
w,

�

�
v
)

− (divw, p) + (q, div v) + (∇w, �∇v) (8)

L(W) = (w, f) + (q,�) + (w, �∇v)� (9)

Remark 1
This formulation has served as the basis of the Galerkin finite element method for the Brinkman
model. A deficiency of the classical formulation is that only certain combinations of velocity and
pressure interpolations are stable, such as the popular Raviart–Thomas elements [26]. In this paper,
we develop a stabilized formulation that emanates from the variational multiscale ideas proposed
by Hughes [27]. The new form is inherently more stable, and accommodates a greater variety of
stable interpolations, such as arbitrary combinations of continuous interpolations, which are known
to be unstable in the classical formulation.

3. HUGHES VARIATIONAL MULTISCALE METHOD

3.1. Multiscale decomposition

We consider the bounded domain � discretized into nel non-overlapping regions �e (element
domains) with boundaries �e, e= 1, 2, . . . , nel , and we denote the union of element interiors and
element boundaries by �′ and �′, respectively:

�′ =
nel⋃
e=1

(int)�e (element interiors) (10)

�′ =
nel⋃
e=1

�e (element boundaries) (11)

We assume an overlapping sum decomposition of the velocity field into coarse scales or re-
solvable scales and fine scales or the subgrid scales. Fine scales can be viewed as components
associated with the regions of high velocity gradients:

v(x)= v̄(x)︸︷︷︸
coarse scale

+ v′(x)︸︷︷︸
fine scale

(12)
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Likewise, we assume an overlapping sum decomposition of the weighting function into coarse
and fine-scale components indicated as w̄ and w′, respectively:

w(x) = w̄(x)︸︷︷︸
coarse scale

+ w′(x)︸ ︷︷ ︸
fine scale

(13)

We further make an assumption that the subgrid scales although non-zero within the elements,
vanish identically over the element boundaries, i.e. v′(x) =w′ = 0 on �.

We now introduce the appropriate spaces of functions for the coarse and fine-scale fields and
specify a direct sum decomposition on these spaces, i.e. V= V̄⊕V′, where V̄ is the space of
trial solutions and weighting functions for the coarse scale velocity field and is identified with
the standard finite element space. On the other hand, various characterizations of V′ are possible,
subject to the restriction imposed by the stability of the formulation that requires V̄ and V′ to be
linearly independent. Consequently, in the discrete case V′ can contain various finite dimensional
approximations, e.g. bubble functions or p-refinements.

Remark 2
The pressure field can also be decomposed into coarse and fine scales. However, without loss of
generality, we assume that the fine-scale pressure field is zero. This assumption helps in eliminating
the terms that would otherwise emanate from the fine-scale part of the weak form of the continuity
equation.

3.2. The multiscale variational problem

We now substitute trial solutions (12) and weighting functions (13) in standard variational form
(6), and this becomes the point of departure from the conventional Galerkin formulations. With
suitable assumptions on the fine-scale field, and employing the linearity of the weighting function,
we can split the problem into coarse and fine-scale parts.

The coarse-scale sub-problem W̄ and the fine-scale problem W′ can be written as follows:
The coarse-scale problem:(

w̄,
�

�
(v̄ + v′)

)
+ (∇w̄, �∇(v̄ + v′)) − (div w̄, p) + (q, div(v̄ + v′))

= (w̄, f) + (q,�) + (w̄, �∇v)� (14)

The fine-scale problem:(
w′, �

�
(v̄ + v′)

)
+ (∇w′, �∇(v̄ + v′)) − (divw′, p) = (w′, f) (15)

The key idea at this point is to solve fine-scale problem (15), defined over the sum of element
interiors, to obtain the fine-scale solution v′. This solution is then substituted in the coarse-scale
problem given by (14), thereby eliminating the explicit appearance of the fine scales v′ while still
modelling their effects.

3.3. Solution of the fine-scale problem (W′)
Let us consider the fine-scale part of the weak form W′, which, because of the assumption on the
fine-scale space, is defined over �′. Employing linearity of the solution slot in Equation (15), and
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rearranging terms, we get

(
w′, �

�
v′) + (∇w′, �∇v′) = (w′, f) −

(
w′, �

�
v̄
)

− (w′, ∇p) − (∇w′, �∇v̄) (16)

=
(
w′,

(
f − �

�
v̄ − ∇p + � �v̄

))
(17)

= (w′, r̄) (18)

where r̄= f − (�/�)v̄ − ∇p + ��v̄. We have applied integration by parts, and assumption that
w′ = 0 on �′ to the fourth integral on the right-hand side of (16) to arrive at (17).

Our objective at this point is to solve (18) either analytically or numerically to extract the
fine-scale solution v′ that can then be substituted in the coarse-scale problem W̄. This would
eliminate the explicit dependence of (14) on v′, while the ensuing terms will model the effect
of v′. Hughes [27] has proposed a Green’s function approach for the solution of the fine-scale
problem. Brezzi and co-workers [8–10] present a way to solve the fine-scale problem via residual-
free bubbles, while Franca and Nesliturk [17] propose a two-level finite element approach to
perform this task. An equivalence between the three approaches is presented in [11].
Remark 3
The right-hand side of (18) is a function of the residual of the Euler–Lagrange equations for the
coarse scales over the sum of element interiors. This is an important ingredient of the present
multiscale method and ensures that the resultant formulation yields a consistent method.

Remark 4
The solution of the fine-scale problem can also be accomplished in the DG framework. A full DG
formulation of the Darcy–Stokes equations is presented in Masud and Hughes [2].

In order to keep the presentation simple, and to extract the structure of the stability tensor s,
we employ bubble functions. To crystallize ideas, and without loss of generality, we assume that
the fine scales v′ and w′ are represented via bubbles over �′, i.e.

v′|�e = be(n)b→ v′
i |�e = be(n)bi on �e (19)

w′|�e = be(n)c→w′
i |�e = be(n)ci on �e (20)

where be represents the bubble shape functions over element domains, i = 1 . . . nsd and b and c
represent the coefficients for the fine-scale trial solutions and weighting functions, respectively.

Substituting (19) and (20) in (18) and taking the vectors of constant coefficients out of the
integral expression, we get

cT
(∫

�e
be

�

�
be d� I +

∫
�e

�|∇be|2 d� I +
∫

�e
�∇be ⊗∇be d�

)
b= cT(be, r̄) (21)

Since c is arbitrary, consequently we have

b=K−1R (22)
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670 A. MASUD

where K and R are defined as follows:

K=
∫

�e
be

�

�
be d� I + �

∫
�e

|∇be|2 d� I + �
∫

�e
∇be ⊗ ∇be d� (23)

R=
∫

�e
ber̄ d� (24)

where I is a nsd × nsd identity matrix, ∇b is a nsd × 1 vector of gradient of bubble functions. We
now reconstruct the fine-scale field over the sum of element domains �′ via recourse to (19):

v′(x) = be(n)b

= be(n)K−1R (25)

3.4. Solution of the coarse-scale problem (W̄)

Let us now consider the coarse-scale part of the weak form W̄. Exploiting linearity of the solution
slot, Equation (14) can be written as

(
w̄,

�

�
v̄
)

+
(
w̄,

�

�
v′) + (∇w̄, �∇v̄) + (∇w̄, �∇v′) − (div w̄, p) + (q, div v̄) + (q, div v′)

= (w̄, f) + (q,�) + (w, �∇v)� (26)

Consider the fourth term on the left-hand side of (26) and apply integration by parts

(∇w̄, �∇v′)� = (∇w̄, �v′)|� − (�w̄, �v′)� (27)

Accordingly, the coarse-scale problem (26) can be written as
(
w̄,

�

�
v̄
)

+ (∇w̄, �∇v̄) − (div w̄, p) + (q, div v̄) +
(
w̄,

�

�
v′) − (�w̄, �v′) − (∇q, v′)

= (w̄, f) + (q,�) + (w, �∇v)� (28)

In Equation (28), v′ appears in fifth, sixth and seventh terms on the left-hand side. Substituting v′
from (25), and with the assumption that the projection of the residual r̄ is constant over element
interiors, we get the following HVM-stabilized form of the Darcy–Stokes equation. Since the
resulting equation is expressed entirely in terms of the coarse scales, for the sake of simplicity,
the superposed bars are dropped:

(
w,

�

�
v
)

+ (∇w, �∇v) − (divw, p) + (q, div v)

+
(
−�

�
w + ∇q + � �w, s

(�

�
v + ∇p − � �v − f

))

= (w, f) + (q,�) + (w, �∇v)� (29)
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Figure 1. Continuous pressure–velocity elements in one dimension.

Figure 2. Convergence rates for linear equal-order one-dimensional elements.

Figure 3. Convergence rates for quadratic equal-order one-dimensional elements.
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Figure 4. Convergence rates for cubic equal-order one-dimensional elements.

Figure 5. Convergence rates for quadratic-velocity linear-pressure one-dimensional elements.

where s is defined as

s=
(
be

∫
�e

be d�

)[∫
�e

be
�

�
be d� I + �

∫
�e

|∇be|2 d� I + �
∫

�e
∇be ⊗ ∇be d�

]−1

(30)

It is important to note that the fifth term on the left-hand side has appeared because of the
assumption of existence of fine scales in the problem. This term is in fact modelling the numerical
subgrid scales in the problem. Since the method is residual based, therefore the resulting formulation
is consistent and accommodates the exact solution. Another important feature of this formulation
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Figure 6. Convergence rates for cubic-velocity quadratic-pressure one-dimensional elements.

Figure 7. Convergence rates for linear-velocity quadratic-pressure one-dimensional elements.

is that the structure of the stabilization tensor s has appeared naturally via the solution of the
fine-scale part of the problem.

Remark 5
It is important to note that the bubble functions only reside in the definition of the stability tensor s.
Consequently, the choice of the bubble functions only affects the value of the stability tensor.

Remark 6
From the definition of s given in (30), in the Darcy limit s is O(�(x)/�(x)) while in the Stokes
limit s is O(h2/�(x)). To keep the definition simple in the numerical calculations, we use the
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Figure 8. Convergence rates for linear-velocity cubic-pressure one-dimensional elements.

following definition of s [1] in the calculations presented in Section 4:

s= 1
2�

ed

where

�e = min
x∈�e

{
�h2

�(x)
,
�(x)
�(x)

}
(31)

where � is a non-dimensional constant which depends on the element type [28, 29]. In our numerical
calculations, the element mesh parameter ‘h’ is taken to be the edge length of the elements for
quadrilaterals, and the short-edge length for triangles. A discussion on the selection of element
characteristic length scale h is presented in Harari and Hughes [30] and in Tezduyar [23].

3.5. The multiscale/stabilized weak formulation

The HVM stabilized weak formulation is: find V∈Y, such that, for all W∈Y,

Bstab(W,V) = Lstab(W) (32)

where

Bstab(W,V) = B(W,V) + 1

2

((
−�

�
w + ∇q + � �w

)
, �e

(�

�
v + ∇p − � �v

))
(33)

Lstab(W) = L(W) + 1

2

((
−�

�
w + ∇q + � �w

)
, �ef

)
(34)

and B(W,V) and L(W) are given by (8) and (9), respectively.
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Figure 9. (a) Contour plot of the exact pressure field and (b) elevation plot of the exact pressure field.
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Figure 10. (a) Contour plot: (a) of the vx component of the exact velocity field and (b) of the vy
component of the exact velocity field.
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Figure 11. Convergence rates for equal-order bilinear quadrilaterals.

Figure 12. Convergence rates for equal-order linear triangles.

4. NUMERICAL EXAMPLES

This section presents numerical convergence study with one- and two-dimensional elements. In all
cases, standard Lagrange interpolation functions together with sufficiently high integration rules
are employed [31, Chapter 3].

4.1. Convergence study for one-dimensional elements

The domain under consideration is �=[0, 1]. The exact pressure solution is given by

p= sin 2�x (35)
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Figure 13. (a) Contour plot of the pressure field for bilinear equal-order quadrilaterals. Two-
hundred 4-node and 400 3-node element mesh. Contour plot (b) of the vx component and (c)
of the vy component of the velocity field for bilinear equal-order quadrilaterals. Two-hundred

4-node and 400 3-node element mesh.

The velocity field is computed from Darcy–Stokes equation in which �/� = 1, � is calculated
by taking the derivative of the velocity field, and � is calculated by taking its normal compo-
nent. In specifying the boundary-value problem, � is prescribed over � while � is prescribed
at the boundary. Uniform meshes were employed in obtaining the results presented in this
section.

Figure 1 shows the continuous velocity–pressure elements studied. Dots correspond to the
velocity nodes and circles correspond to the pressure nodes. Numerically attained convergence
rates for the various combinations of velocity and pressure interpolations are presented in
Figures 2–8.
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Figure 14. (a) Contour plot of the pressure field for bilinear equal-order quadrilaterals. Contour plot
(b) of the vx component and (c) of the vy component of the velocity field.

4.2. Convergence study for two-dimensional linear elements

The domain under consideration is � =[0, 1] × [0, 1]. The exact solution to the problem is
given by

vx (x, y)= −x2(x − 1)2y(y − 1)(2y − 1) (36)

vy(x, y)=−vx (y, x) (37)

p(x, y)= (x − 1
2 )(y − 1

2 ) (38)

Substituting the velocity and pressure field in (1) yields the body force vector that is then numer-
ically integrated over the domain. In specifying the boundary-value problem, v= 0 is prescribed
nodally at the boundary. A contour plot and elevation plot of the exact pressure are shown in
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Figure 9(a) and (b). Figure 10(a) and (b) presents contours of the components of the exact ve-
locity field. The element mesh parameter, h, is taken to be the edge length of the elements for
quadrilaterals, and the short-edge length for triangles. Convergence rates for equal-order bilinear
quadrilateral and linear triangles are presented in Figures 11 and 12. The results are consistent
with the corresponding one-dimensional cases.

Computed pressure and velocity field for the composite mesh composed of linear triangles and
bilinear quadrilaterals are shown in Figure 13(a)–(c). Likewise, contour plots for the computed
pressure and velocity field for the distorted mesh of linear triangles are shown in Figure 14(a)–(c).
In both cases, stable velocity and pressure fields are obtained.

5. CONCLUSIONS

We have presented a new stabilized finite element method for the Darcy–Stokes equations. Under-
lying idea is a decomposition of the velocity field into coarse/resolved scales and fine/unresolved
scales. Modelling of the unresolved scales yields the stabilized form. An important feature of the
method is that the structure of the stabilization tensor s appears naturally via the solution of the
fine-scale problem. Numerical tests show stable and convergent behaviour for various combinations
of velocity–pressure interpolations. Preliminary results on two-dimensional linear elements also
show similar stable and convergent behaviour.
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